
Statistical Modelling of
Microorganisms

Optionaler Untertitel der Arbeit

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Medieninformatik und Visual Computing

eingereicht von

Theresa Wihann
Matrikelnummer 1107772

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Dipl.-Ing. Dr.techn. Assoc. Prof. Ivan Viola
Mitwirkung: Dr.techn. Peter Mindek

Dipl.-Ing. Tobias Klein

Wien, 28. Februar 2017
Theresa Wihann Ivan Viola

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Statistical Modeling of
Microorganisms

Optional Subtitle of the Thesis

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Media Informatics and Visual Computing

by

Theresa Wihann
Registration Number 1107772

to the Faculty of Informatics

at the TU Wien

Advisor: Dipl.-Ing. Dr.techn. Assoc. Prof. Ivan Viola
Assistance: Dr.techn. Peter Mindek

Dipl.-Ing. Tobias Klein

Vienna, 28th February, 2017
Theresa Wihann Ivan Viola

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Theresa Wihann
Rolandsberggasse 73/1 3400 Klosterneuburg

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 28. Februar 2017
Theresa Wihann

v

Acknowledgements

This bachelor thesis was supported by Ivan Viola, Tobias Klein and Peter Mindek. I would
like to express my thanks to Ivan Viola for the continues impulses and his constructive
critic. My thanks also goes to Tobias and Peter for the day and night support in
mathematical and implementation related questions. Finally I want to express my thanks
and appreciations to my colleague Lukas Mitterhofer, who perfectly complemented me.

vii

Kurzfassung

Modelle von natürlichen Organismen können Wissenschaftler in diversen Bereichen wie
der Medizin, Pharmazie oder Biologie unterstützen. Die meisten biologischen Organismen
bestehen aus mehreren tausend Komponenten wie Proteinen, Lipiden und Säuren. Das
Erstellen von solchen großen Strukturen ist oft sehr kompliziert und zeitaufwändig.
In unserer Arbeit wollen wir daher einen auf statistischer Modellierung basierenden
Ansatz vorstellen. Dieser ermöglicht die Modellierung von Mikroorganismen mit einem
relativ geringen Aufwand. Die Modellierung basiert auf einem Entscheidungsbaum und
verschieden Wahrscheinlichkeitsberechnungen. Es wird von einer zufälligen Verteilung
der Objekte in der Szene ausgegangen. Danach werden sukzessive Informationen über
die Veränderungen gesammelt, welche der User an den Objekte vornimmt. Diese dienen
als Vorlage für die Veränderung der Orientierung und Position aller anderen Objekte in
der Szene. Der Ansatz wurde praktisch in einem Tool umgesetzt, welches mit Unity3D
entwickelt wurde.

ix

Abstract

Models of a biological organism can support scientists in various fields, such as medicine,
pharmacy or biology. When precise macromolecular composition of an organism is to
be captured by the model, tens of thousands of protein macromolecules have to be
positioned in order to create the model. This process is complicated and time consuming.
In this thesis we propose an approach based on statistical modeling of microorganisms,
which enables the creation of such scenes with minimal effort. The modeling is based on
decision trees and probability calculations. The basic principle is to start with a random
distribution. Then subsequently adjustments from the user on one or several objects,
such as molecules, are gathered. These serve as examples to change the orientation and
location of all other objects in the scene. The approach is realized in a tool implemented
in Unity3D.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1

2 Related Work 3

3 Concept and Methods 5
3.1 Decision tree . 6
3.2 Kernel Density Estimation . 9

4 Demonstration 13
4.1 Conditions . 13
4.2 HIV Virion . 14
4.3 Cluster . 16
4.4 Rotation . 16

5 Discussion and Future Work 19
5.1 Cluster . 19
5.2 Rotation . 20
5.3 Compartments . 20
5.4 Usability . 21

6 Conclusion 23

Bibliography 25

xiii

CHAPTER 1
Introduction

Visualization and creation of structures, which are invisible to the naked eye, is a
challenge in various branches of natural science. Such visualizations can help scientists
to disseminate their discoveries to the public, or communicate them to scientists from
different fields. Computer graphic is often utilized to provide the presentation of these
structures. In our approach we concentrate on the modeling of macromolecular scenes
depicting microorganisms like viruses or bacteria. On the macromolecular scale, sometimes
also referred to as mesoscale, a microorganism consists of proteins, lipids and nucleic acids,
which are built of individual atoms. In order to model an organism on this scale, all the
protein and other molecules have to be placed in space to create realistic representation
of the given organism.

When creating a biological model one of the most important factors is, that the model
is not too regular, since nature is not perfect. Most of the state of the art modeling
concepts are rule based, which produces a kind of inflexibility that we want to address
with the statistical method of modeling described in this thesis. As starting point we
used a model of an HIV which is created with cellPACK [GTJO14] a software package
for modeling microorganisms with an atomic resolution. Creating a complete model with
cellPACK is time consuming and need additionally tools. We want to provide the whole
modeling process in one tool in a reasonable amount of time, without the inflexibility of
rule based approaches.

With our modeling approach we offer the possibility to create structures consisting of
several thousand proteins interactively. We limit ourselves to the modeling with proteins
only, since we use the protein models provided by the Protein Data Base2. For every
protein the position of the center and local rotation is stored. The information of the
structure of the protein comes from pdb files, which can be downloaded from the PDB
for free. In order to give the user the opportunity to use every available protein of the

2http://www.rcsb.org

1

1. Introduction

database, it is possible to download pdb files from the website while modeling by using
the correct abbreviation of the protein in the protein database.

To model large biological macromolecular scenes, it is not useful or rather not possible
to place every protein by hand. Therefore we propose a statistical approach, which is
based on a decision tree where every node corresponds to an area of the scene and holds
a probability value for the placement, rotation and cluster formation of the proteins
in this area. The decision tree is created during the modeling process and any action
of the user affects the structure or the probabilities. After every change made by the
user, the positions and rotations of the affected proteins are recalculated based on all
previous actions. This enables the user to create extensive scenes. Our approach deals
with the calculation of the placement and orientation of the proteins and not with the
rendering. To achieve a fast rendering of large biological data we integrated the practical
implementation in cellView [MAPV15].

2

CHAPTER 2
Related Work

In this section we describe the work related to statistical modeling, methods or tools to
create very large structures or scenes and mathematical concepts used in our approach.

State of the art in the field of modeling of microorganisms is cellPACK [GTJO14],
which is a software package for modeling microorganisms with an atomic resolution. It
populates predefined geometric compartments with models of protein molecules, based
on a so-called recipe file. The recipe contains information, such as the hierarchy of the
model and protein related information, such as the amount of each protein type or pdb
abbreviation. The models of the proteins are obtained from the Protein Database (PDB).
To create a final model of a microorganism additional tools are required. The creation of
a model of a microorganism with cellPACK is cumbersome and quite time consuming,
since it is necessary to manually create the recipe file, and the model generation itself
is computationally expensive and it can take up to an hour. Therefore, we propose a
statistical modeling system, which provides the possibility to model organisms visually, in
a WYSIWYG (what you see is what you get) manner, while the computation is carried
out in real time, thus significantly lowering the model creation time.

Statistical modeling and generation approaches are used in different fields. Conklin at
al. [Con03] uses an approach to generate music from statistical models. The statistical
models to classify new pieces or sequences of pieces, are created in advance based on
existing pieces. The generation of text [Lan00] is another field where statistical methods
are constantly used. With the statistical modeling of microorganisms we apply the
statistical approaches in a different context and field. Our approach includes several
components. The central component is the decision tree for the placement and orientation
of the proteins.

Decision trees are used in various areas, such as data-mining [AW97], machine learn-
ing [SL91], agent-based modelling [CCW98], and decision theory [BDW02]. Grabczewski
at al. [Grą14] give an overview of methods to generate decision trees like CHAIDs ,CARTs,

3

2. Related Work

ID3 and C4,5. In our approach the created decision trees are on the one hand rather
flat, since every compartment corresponds to one node and the amount of compartments
corresponds to the biological structure of a cell and on the other hand mostly no binary
trees, since a compartment can have an arbitrary amount of sub-compartments.

Mathematically the rotation can be implemented in different ways [Die06]. The main
mathematical approaches to represent rotations are rotation matrices, Euler angles and
quaternions. The most common method is the set of three Euler angles which describes
the rotation around x, y and z axis. Euler angles are really intuitive in the case that the
rotation should be around the x, y or z axis. When the rotation should be performed
around arbitrary axis it is quite complicated. Furthermore the order of the rotations
is not arbitrary a rotation in sequence x,y,z provides a different output than y,z,x.
Another problem which occurs in connection with Euler angles is the gimbal lock [Han05].
Quaternions are a set of four values and basically consists of a rotation axis and a rotation
angle. The representation as quaternion is not as intuitive as Euler angles but it avoids
the gimbal lock, it is a rotation around one single axis and for complex rotation faster.
We wanted the advantage of intuitive calculation with quaternion as well as avoiding
the gimbal lock, but we wanted the intuitive setup for rotations. Therefore we decided
for the internal representation as quaternions, but for the user interface we took the
Euler angles. It is necessary to control the 3D rotation, there exist several approaches for
that purpose [BRP05] like Chen et al.’s Virtual Trackball,Two-Axis Valuator with Fixed
Up-vector and Bell’s Virtual Trackball. In our approach we used the built-in handles
from unity to control the rotation.

In our approach, the user provides several samples of how the protein molecules should
be oriented. The orientations of all other proteins has to be interpolated from these
samples for a naturally looking model. Silverman at al. [Sil86] discuss various methods
for the density estimation, such as histograms, orthogonal series estimators and the kernel
density estimation. In our approach we used the most commonly used estimator, the
kernel density estimation [Par62] to interpolate between the samples. The KDE provides
a continuous function, which can be calculated in every point, it is easy to implement
and it is quite simple to create a multivariate KDE. Which is necessary since the sample
quaternions consist of four values.

Our tool is integrated into cellVIEW [MAPV15]. CellVIEW is a tool for real-time
visualization of biological models with atomic resolution, employing various acceleration
methods and level-of-detail schemes. The models visualized by cellVIEW are static
representations of the microorganisms in a particular point in their lifetime. It is possible
to examine the organism by zooming and applying cutaway views, as well as using an
advanced visibility control called Visiblity Equalizer [LMMS+16]. The user also gains
information about the proteins which the model consists of. However, it is not possible
to interactively create a model or modify an existing model in the tool. In this thesis, we
propose a system which provides such functionalities.

4

CHAPTER 3
Concept and Methods

Every scene created with our tool consists of different proteins. The proteins build
compartments (see Figure 3.1a), clusters (see Figure 3.1b) or can just be distributed
freely in space (see Figure 3.1c). Compartments are areas of the scene enclosed by a
membrane consisting of lipids, in our approach represented by protein. For instance,
in a cell, the compartments would correspond with the organelles, such as nucleus or
mitochondria. Protein behavior often requires relative positioning to the membrane, such
as being close to a membrane or following a gradient. For that reason we use in our
approach distance functions to describe compartments, whose 0 level set correspond with
the compartment surface. The input for the function is a 3D point and the result is a
positive or negative decimal. A negative decimal implies, that the point is inside the
compartment and a positive that it is outside. The value of the decimal indicates the
distance to the surface. The surface is populated by proteins of one type, chosen by the
user.

The user has the opportunity to form clusters with an arbitrary amount of different
or similar proteins. The center of the cluster is the mean of the protein centers. The
clustered proteins are placed, with the same distance, randomly around the center.
Each time the user adds another protein to a cluster, all clusters are recalculated and
distributed again.

For the placement of the proteins or clusters there exist three regions: It can be inside,
outside or on the surface of a compartment. One compartment object can include an
arbitrary amount of child compartments.

The modeling process is divided into two phases, the compartment creation and the
scene population with proteins. During the first phase of the process, the compartment
creation, it is possible to choose one of the provided distance functions and the type
and amount of proteins to populate the surface. In our approach the distance function
for ellipsoids and for capsules are implemented, since these forms are appropriate to

5

3. Concept and Methods

(a) compartments (b) pair cluster (c) freely distributed

Figure 3.1

approximate natural shapes. It is possible to scale, rotate and move compartments. The
only limitation is, that the outermost compartment can not be moved outside of the
center of the scene. In this phase the rotation of the surface proteins can be changed as
well. When the first phase is finished, the structure of the decision tree will be created.
In the decision tree every compartment object of the scene corresponds to one node of the
tree and every node contains the possibilities for the placement, rotation and clustering
for the respective compartment. After the first phase it is not possible to change the
shape and position of the compartments or the rotation of the surface proteins again.

In the second phase the scene can be filled with proteins. The amount and the type of
the added proteins can be set by the user. Once they are added the user can start to
change the rotation, the position and the cluster formation of all proteins of the same
type by changing one of them. Furthermore, in the second phase the probabilities of
the decision tree are influenced. In both phases it is possible to download pdb files with
structural information of the proteins needed for the microorganism. In order to give
the user more control over the outcome, the color and description of the proteins can be
changed. This information is stored in a json file.
It is possible to export new scenes and import scenes, which have been modeled before.
The exported file contains the information of the decision tree, compartments and proteins
to recreate the scene. The user can continue working with the imported decision tree.

3.1 Decision tree
In order to generalize the user affected modification across the compartments hierarchy,
we needed a structure that capture the changes of the placement, rotation and cluster
formation. In our approach we use as structure a decision tree, since we have different
protein types we need one per type. The calculation of position and orientation of the
proteins in the scene as well as the cluster membership is based on these decision trees.
The decision tress are generated and transformed during the modeling process. The
structure of different trees is always the same, where every tree-node corresponds to

6

3.1. Decision tree

one compartment and contains the probabilities for the placement and rotation of the
proteins inside of this compartment. The tree for a protein type is created as soon as the
user performs the first modification for that protein type.

Every action of the user affects the structure of the tree or the probabilities for rotation,
placement and clustering. The probability for the placement inside a compartment is
simply the amount of user placed proteins inside of the compartment divided by the
amount of all user placed proteins in the scene. The cluster formation process as well as
the calculation of the probability and determination of rotations will be discussed in the
next sections.

3.1.1 Clustering

In nature not all proteins are distributed freely in a cell, some are forming clusters. So
we give the possibility to form cluster, either with proteins of the same type or with
proteins of different types. To provide the functionality we had to distinguish between
two different kinds of movement. First the movement across compartment borders, which
affects the placement probabilities and second the movement within a compartment
which leads to cluster formation. These assumptions were taken, because the movement
inside a compartment would not have any other useful purpose, since the positions are
recalculated after each user affected movement. To build a cluster the user has to move
one protein towards another protein, with which one the cluster should be formed. After
the user influenced action all affected proteins in the compartment form cluster. For
example if the user moves a protein towards another protein, of the same type, to form
a pair, all proteins of the same type, in the current compartment, will follow and form
pairs. If the compartment contains a odd amount of proteins the remaining protein will
be placed as non clustered protein. The amount of proteins in a cluster is not restricted.
The clusters are distributed uniformly in the current compartment, it is not possible to
change the position of a whole clusters. To dissolve a cluster or to reduce the amount
of proteins in a cluster the user has to move one of the clustered proteins a certain
distance away from the cluster. The distance is twice the distance between the protein
centers. The clustering information is stored separately,for every compartment, in the
corresponding tree node.

3.1.2 Position and Rotation

Every single protein in the scene has its own rotation and position. The position is
described by a 4D vector [x, y, z, w] where x, y and z correspond to the position in the
3D space and w stores the unique ID of the protein type. The rotation is described as a
quaternion, which represents a rotation as a set of 4 numbers. The quaternion, which is
saved for every protein, describes the rotation in local space of the protein. When the
proteins are added to the scene the rotation is [0, 0, 0, 0]. After the first user affected
rotation proteins are always rotated relative to the surface of the closest compartment

7

3. Concept and Methods

object. To achieve that, it is necessary to use the normal vectors of the compartments as
references.

The normal vector is calculated at the surface point closest to the currently focused
protein. The normal vector is equal to the gradient, which indicates the direction of the
biggest rate of increase of the function in the surface point. Since all compartments are
described by distance functions, the gradient is calculated with the difference quotient
with central difference (see equation 3.1). The central difference is the mean of forward-
and backward difference.

∆y
∆x := f(x+ ∆x)− f(x−∆x)

2∆x (3.1)

∆x := x1 − x
x ... x value of closest point on the surface
x1 ... x value of an adjacent point

Since the calculation is in 3D space it has to be calculated in x, y and z-direction. The
difference quotient for x, y and z are the x, y and z components of the normal vector.

Quaternion

There are different methods [Die06] to work with rotations. As already mentioned in
this work, in our approach rotations are described by quaternions. Quaternions are
not as intuitive as Euler angles but much faster and easier to work with in complex
operations. A problem which occurs in connection with Euler angles is so called gimbal
lock. Since the rotation is specified by three angles around three perpendicular axes which
are applied consecutively, it might happen that two of the axes get aligned after applying
the rotation, causing a loss of one degree of freedom. Quaternions are independent of the
coordinate system and the gimbal lock does not occur because the point, which should be
rotated, is moved on the surface of a unit sphere located in the origin of the coordinate
system. The quaternion represents a rotation as a set of 4 numbers [x, y, z, w] in a range
of [−1.0, 1.0] and consists basically of a rotation axis and an angle.

Quaternion components:
x = rotationAxis.x ∗ sin(rotationAngle2)
y = rotationAxis.y ∗ sin(rotationAngle2)
z = rotationAxis.z ∗ sin(rotationAngle2)
w = cos(rotationAngle2)

A quaternion is still readable, if it is defined by [0.1, 0.7, 0.0, 0.7] it is possible to gather
from this, that it is a rotation mostly around the y-axis. Because the x and z values are
smaller than y. The transformed equation of w, 2 ∗ arccos(w) gives the rotation angle in

8

3.2. Kernel Density Estimation

radians. In case of 0.7 it is 1.57 which equals a rotation around 90◦ round the rotation
axis. To cumulate two rotations, the quaternions are multiplied by each other. The
multiplication is not commutative.

Figure 3.2: (a) initial situation, the blue protein is the user rotated one, with the
normal vector n1 and quaternion q1; (b) transformation of q1 in reference space; (c)
transformed quaternion q’ is stored; (d) transformation of q’ to individual quaternion
q2, this calculation is performed for each affected protein; (e) final output with correct
rotation of the proteins

To infer from the user input rotation to the rotation of every single protein in the scene
the quaternions of the user-rotated proteins (reference protein) q1 are stored as samples
in the respective tree node, but not in the original form. As the rotation is relative to a
compartment, the rotation quaternion of every protein is different. Because of this the
quaternion q1 of the reference protein has to be transformed to a reference space shown
in Figure 3.2. To achieve that, we calculate the rotation between the normal vector at the
surface point closest to the reference protein and the vector r(0, 1, 0) which corresponds
to the standard y-Axis. The original quaternion q1 of the protein is multiplied with that
rotation which transforms it into reference space. The sample quaternions in reference
space are the base of the calculation of the rotations for every single protein. For the
calculation of the individual rotation for all proteins in the scene the corresponding
normal vector and the rotation quaternion between the normal and the reference vector
r is calculated and multiplied with the reference quaternion q’.

3.2 Kernel Density Estimation
If the proteins have the same rotation, relative to a compartment surface, the output
is often to structured for a model of a biological organism. To achieve a model that is
not too structured the reference quaternions are created randomly and are evaluated
with a kernel density estimation (KDE) with a Gaussian kernel, based on the sample
quaternions. The KDE is a statical method to estimate the probability distribution of a
random value. For the KDE different kernels can be used, in our tool a Gaussian function
(Equation (3.2)) is implemented. The bandwith h has an impact on the smoothness
of the KDE. The higher it is the lazier the KDE reacts to individual samples. In our
approach the bandwith is set to a fixed value and not changeable by the user. The

9

3. Concept and Methods

variance for the KDE can be set by the user for the particular protein types. For better
usability the variance is specified in degrees by the user and converted to radians before
the calculations. The variance is the expected squared deviation from the stored samples.
The variance in x, y and z direction is the same. The user can change the variance of
the currently selected protein at any time, but it only takes an effect, if the protein is
also rotated in the same process step.

g(x) = a exp(−(x− b)2

2c2) (3.2)

Since the quaternion consists of four values it is necessary to use a 4D Gaussian function
as kernel for the kernel density estimation.

g(x, y, z, w) = a exp(−((x− bx)2

2cx2 + (x− by)2

2cy2 + (x− bz)2

2cz2 + (x− bw)2

2cw2)) (3.3)

With a= 1
σ
√

2π , b = µ and c = σ it results in the correct KDE for quaternions:

f(x, y, z, w) = 1
nh

n∑
i=1

1
σ
√

2π
exp(− 1

2σ2 ((x−xi)2 +(y−yi)2 +(z−zi)2 +(w−wi)2)) (3.4)

The result of the equation is the probability for the quaternion [x, y, z, w] to be accepted as
rotation for a protein. The algorithm to create a random Gaussian distributed quaternion
with kernel density estimation is implemented as follows:

10

3.2. Kernel Density Estimation

Algorithm 3.1: create random quaternion
Input: a List with quaternions samples, a skalar variance
Output: quaternion q

1 σ = 2π
360 ∗ variance;

2 factor = 1
n0.2σ

√
2π ;

3 while q not accepted do
4 q = new randomQuaternion();
5 sum = 0;
6 foreach s in samples do
7 sum += exp(− 1

2σ ((qx − sx)2 + (qy − sy)2 + (qz − sz)2 + (qw − sw)2);
8 end
9 probability = factor * sum;

10 if randomValue.Range(0.0,1.0) <= propability then
11 return q;
12 end
13 end

11

CHAPTER 4
Demonstration

4.1 Conditions

CellVIEW [MAPV15] is used to render the scene and Unity3D 1 and C# were used for
the development of our tool. With the help of our tool, various macromolecular scenes,
consisting of different proteins, can be realized. In Figure 4.1 different kinds of proteins
are shown. The shape of the proteins is given by the pdb files and is not changed in the
whole modeling process. The domains of the proteins can be distinguished by the color.
The user is able to change the color while modeling.

(a) Hemoglobin (b) Immunoglobolin (c) Insulin

Figure 4.1: Different kinds of proteins from the PDB rendered with cellView.

1http://www.unity3d.com

13

4. Demonstration

4.2 HIV Virion

CellPACK [GTJO14] provides a detailed model of the HIV Virus (shown in Figure 4.2a)
rendered with cellVIEW [MAPV15], which we tried to recreate with our statistical
modeling approach (shown in Figure 4.2b).

(a) The HIV virus created with cellPack

(b) HIV virus statistical approach

Figure 4.2

CellPACK uses a recipe file, to create the HIV virus, which is time consuming and
unintuitive. Figure 4.6 shows a section of such a json file. It contains the hierarchy
of the virion, which consists of different nested compartments. In the given example,
the root and the plasma definition are visible. The compartments contain ingredient
descriptions. For example the ingredient with the ID 10 is Albumin, a protein produced
in the liver and the most abundant protein in human blood plasma. The ingredient
specification contains information about the amount (nbMol), the abbreviation for the
protein database (pdb) and placement information (center). The recipe file is not directly
used in our approach, but we used it to gather the information about the amount and
the location of the ingredients of the HIV to recreate it with the correct composition.

The optical output of the cellPACK model differs from the output of our statistical
modeling approach in the following points: The membrane of the HIV virus from cellPACK
consists of lipids. We implemented a general approach which can populate membranes
with any model. Since we do not obtain a model of a lipid we used as placeholder a
protein which shape looks similar to the shape of the lipid used in cellPACK.

We have a general approach for arbitrary distance functions to describe the compartments.
As proof of concept the functions for ellipsoids and capsules are implemented, seen in
Figure 4.3, since that shapes approximate natural shapes best. The nucleus of the virion
from the statistical approach is an ellipsoid. The nucleus from the cellPACK model on

14

4.2. HIV Virion

(a) ellipsoid compartment (b) ellipsoid special case (c) capsule compartment

Figure 4.3: Compartments, output of the implemented distance functions

the other hand is a free form surface. The implementation is easily to extend it is just
necessary to provide a distance function which describes the free form surface.

Another difference is the overlapping of proteins. In our approach a basic collision
detection and a framework to optimize the collision detection are implemented. The result
with round proteins is quite good, but for other shapes the surface of the compartment
is not populated uniformly and holes appear. The statistical created HIV is modeled
without collision detection, therefore overlaps occur which are visible in the output. The
output of cellView displays no overlapping. The big advantage of the statistical approach
is that the modeling process is considerably faster and more intuitive. Creating the HIV
(Figure 4.2a) with cellPACK takes a couple of hours. Modeling the HIV (Figure 4.2b)
consisting of the same ingredients, with the statistical approach, takes about 30 minutes.

(a) same proteins (b) different proteins

Figure 4.4: Dimer cluster

15

4. Demonstration

4.3 Cluster
A cluster consists of an arbitrary amount of proteins. Figure 4.4a shows a compartment
with clusters formed by two similar proteins. It can be seen, that some proteins are
not clustered since the number of proteins is odd and therefore not every protein has a
partner to form a cluster. Figure 4.4b shows clusters that are formed between different
proteins. The user can build clusters by moving proteins towards another within a
compartment. The rotations of the proteins within a cluster are randomly set. The
clusters are distributed randomly in the corresponding compartment object.

4.4 Rotation
When the proteins are added to the scene the rotation quaternion is [0, 0, 0, 0] shown in
Figure 4.5a. After the first user affected rotation the rotation is always relative to the
surface of the nearest compartment object. In Figure 4.5b all proteins are rotated the
same. Figure 4.5c shows the rotation in two different directions with variance 0. The
output of the rotation with a variance deviating from zero is shown in Figure 4.5d.

16

4.4. Rotation

(a) Rotation 0 (b) all same rotation

(c) two different rotations (d) rotation variance 5

Figure 4.5: (a) shows the output after the proteins were added to the scene and moved
into the outer compartment; (b) the output after the first rotation, with a variance of 0;
(c) shows the output after rotating one protein in the opposite direction, with a variance
of 0; (d) shows the output of the same rotation as (b) but with a variance of 5

17

4. Demonstration

Figure 4.6: Part of the HIV recipe file, which describes the structure and ingredients

18

CHAPTER 5
Discussion and Future Work

Our tool implements the described approach of statistical modeling. The basic concepts
are implemented, but there is a great potential in refining and extending the methods,
concepts and implementation.

5.1 Cluster
For the cluster formation the first steps are implemented. As can be seen in Figure 4.4a
and Figure 4.4b the rotations of the proteins included in a cluster is random and the
rotation of the whole cluster too. At the moment the only characteristic is the distance
between the protein centers. It is not possible to model the protein cluster of the capsid
surface with our approach. Therefore the cluster formation have to be extended so that
it can capture not only the closeness of the proteins, but also their geometric structure
the position of the whole cluster and the rotation relative to the surface.

Templates are another approach to realize clusters, which is implemented in our
tool. It is a proof of concept especially for clusters on membranes. A template consists
of an arbitrary amount of similar or different proteins and is a fixed small structures
with a center. The tool provides an extra view for template creation and the template
information can be stored in a json file. These template files can be imported during
the modeling process of a scene. At the moment templates can only be used in the
compartment creation phase. It is possible to choose "use template" for the surface
population instead of a protein type. The output of a surface populated by a template
can be seen in Figure 5.1. Since the collision detection for templates is not implemented
yet the surface is not completely populated with templates to give a better demonstration.
The advantage of the concept of templates is the possibility to create a small structure
and use this like a single protein in the scene. The template creation as well as the
following usage in the modeling process has to be improved. At the moment just the

19

5. Discussion and Future Work

basics and the framework to create and use templates is implemented. It is not possible
to move or rotate the template after surface population. Therefore to improve the
templates the movement, rotation and integration of templates in the decision tree should
be implemented.

Figure 5.1: Surface populated by a template, to give a better demonstration it is not
completely covered

5.2 Rotation

The rotation is implemented as described in Section 3.3. The random quaternions
evaluated by the KDE does not constantly deliver visual output of the same quality. One
possibility to achieve a better visual output, is to implement different kernels for kernel
density estimation and compare which one deliver the best result.

5.3 Compartments

Compartments are described by distance functions which are implemented for ellipsoids
and capsules. Free form surfaces would improve the outcome, since capsules and ellipsoids
often appear too structured for elements like the nucleus. Basically the program works
with any arbitrary distance function, therefor to expand the tool with other shapes only
the desired distance function has to be implemented. To use free form surfaces, a distance
transform could be used to transform it into a distance field.

At the moment the distribution of the proteins within the compartments or on the
membrane is implemented by random samples. To optimize the distribution of the
proteins within the compartments different distribution function could be implemented.
May be changeable by the user so that the user can choose the distribution with the less
artifacts for the current processed form.

20

5.4. Usability

(a) move handle (b) rotate handle

Figure 5.2: Hemogolobin, move and rotate handle

Another possibility to increase the usability in relation to compartments is to enable
the movement and rotation of compartments after compartment creation with all the
enclosed proteins and sub-compartments.

5.4 Usability
We tried to keep the modeling process as simple and intuitive as possible. To move or
rotate the proteins there exist two separate handles. The move handle (see Figure 5.2a)
is activated by selecting a protein. A click on an already selected protein changes to
the rotate-handle (see Figure 5.2b). The accurate placement of objects in 3D space is
often slightly difficult. To raise the usability the tool restricts the user to axis aligned
movements. Nevertheless the user has to change the perspective repeatedly to place the
protein at the desired place. The implementation of another concept or method for the
placement in 3D space could improve the usability.

The fact that just protein models are available restricts the user by modeling a biological
correct model. It would be a great impact if also lipids and RNA could be used for
modeling, which would be possible if appropriate models would be accessible.

21

CHAPTER 6
Conclusion

The thesis has given an insight into the concepts of our statistical approach for the
modeling of microorganisms. The basics as the decision tree, the placement, rotation and
clustering of proteins and statistical calculations are implemented in our tool. During
the implementation of our approach we found out that the positioning of the proteins in
3D space is one of the most challenging parts of the modeling process, so in the future
research this should be addressed. There are many other possibilities to refine and extend
the methods, features and implementation, but the result of the approach satisfies the
expectation to model a microorganism with several thousand proteins quite simple and
fast within one tool that is usable with relative little effort. Our tool shows that it is
possible to model organisms as large as the HIV created with cellPACK with reasonable
precision. The statistical modeling approach for extensive scenes is very promising, but
needs more research, since it is still on the very beginning. Our software is actually a
modular framework which can serve as basis for further research.

23

Bibliography

[AW97] Chidanand Apté and Sholom Weiss. Data mining with decision trees and
decision rules. Future generation computer systems, 13(2-3):197–210, 1997.

[BDW02] Harry Buhrman and Ronald De Wolf. Complexity measures and decision
tree complexity: a survey. Theoretical Computer Science, 288(1):21–43,
2002.

[BRP05] Ragnar Bade, Felix Ritter, and Bernhard Preim. Usability comparison of
mouse-based interaction techniques for predictable 3d rotation. In Interna-
tional Symposium on Smart Graphics, pages 138–150. Springer, 2005.

[CCW98] Bark Cheung Chiu and Geoffrey I Webb. Using decision trees for agent
modeling: improving prediction performance. User Modeling and User-
Adapted Interaction, 8(1):131–152, 1998.

[Con03] Darrell Conklin. Music generation from statistical models. In Proceedings
of the AISB 2003 symposium on artificial intelligence and creativity in the
arts and science, pages 30–35, 2003.

[Die06] James Diebel. Representing attitude: Euler angles, unit quaternions, and
rotation vectors. Matrix, 58(15-16):1–35, 2006.

[Grą14] Krzysztof Grąbczewski. Meta-learning in decision tree induction. Springer,
2014.

[GTJO14] Ludovic Autin Stefano Forli Michel F. Sanner Graham T. Johnson, David
S. Goodsell and Arthur J. Olson. 3d molecular models of whole hiv-1 virions
generated with cellpack. Faraday Discuss., 169:23, 2014.

[Han05] Andrew J Hanson. Visualizing quaternions. In ACM SIGGRAPH 2005
Courses, page 1. ACM, 2005.

[Lan00] Irene Langkilde. Forest-based statistical sentence generation. In Proceedings
of the 1st North American chapter of the Association for Computational
Linguistics conference, pages 170–177. Association for Computational Lin-
guistics, 2000.

25

[LMMS+16] M Le Muzic, Peter Mindek, Johannes Sorger, Ludovic Autin, David S
Goodsell, and Ivan Viola. Visibility equalizer cutaway visualization of
mesoscopic biological models. In Computer Graphics Forum, volume 35,
pages 161–170. Wiley Online Library, 2016.

[MAPV15] Mathieu Le Muzic, Ludovic Autin, Julius Parulek, and Ivan Viola. cellview:
a tool for illustrative and multi-scale rendering of large biomolecular datasets.
In Katja B"uhler, Lars Linsen, and Nigel W. John, editors, Eurographics
Workshop on Visual Computing for Biology and Medicine, pages 61–70. EG
Digital Library, The Eurographics Association, sep 2015.

[Par62] Emanuel Parzen. On estimation of a probability density function and mode.
The annals of mathematical statistics, 33(3):1065–1076, 1962.

[Sil86] Bernard W Silverman. Density estimation for statistics and data analysis,
volume 26. CRC press, 1986.

[SL91] S Rasoul Safavian and David Landgrebe. A survey of decision tree clas-
sifier methodology. IEEE transactions on systems, man, and cybernetics,
21(3):660–674, 1991.

26

	Kurzfassung
	Abstract
	Contents
	Introduction
	Related Work
	Concept and Methods
	Decision tree
	Kernel Density Estimation

	Demonstration
	Conditions
	HIV Virion
	Cluster
	Rotation

	Discussion and Future Work
	Cluster
	Rotation
	Compartments
	Usability

	Conclusion
	Bibliography

